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A new second-order time-accurate fractional-step method for solving unsteady in-
compressible Navier–Stokes equations on hybrid unstructured grids is presented. The
nonstaggered grid method, originally developed by Rhie and Chow (1983,AIAA J.
21, 1525) for steady flow and further extended by Zanget al.(1994,J. Comput. Phys.
114, 18) to unsteady flow on structured grids, is employed in the present study to
enforce mass conservation on hybrid unstructured grids. The pressure and Cartesian
velocity components are defined at the center of each cell, while the face-normal ve-
locities are defined at the mid-points of the corresponding cell faces. A second-order
fully implicit time-advancement scheme is used for time integration and the result-
ing nonlinear equations are linearized without losing the overall time accuracy. Both
the momentum and Poisson equations are integrated with the finite volume method
and the flow variables at the cell face are obtained using an interpolation scheme
independent of cell shape. The present numerical method is applied to four different
benchmark problems and proves to be accurate and efficient.c© 2000 Academic Press

Key Words:finite volume method; unsteady incompressible flow; nonstaggered
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1. INTRODUCTION

In this paper we present a second-order time-accurate numerical method for solving
unsteady incompressible Navier–Stokes equations on hybrid unstructured grids. In the case
of the structured grid, one of the most popular methods to obtain a time-accurate solution
for unsteady incompressible flow is a fractional-step method on the staggered grid system,
where a pseudo-pressure is used to correct the velocity field such that the continuity equation
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is satisfied at each computational time step [1]. However, in the case of the unstructured
grid, the staggered grid system makes the code more complicated than the nonstaggered
grid system, because for the staggered grid the control volumes for the pressure and velocity
are very different from each other. Therefore, in general the nonstaggered grid system is
preferred to the staggered grid system in the case of the unstructured grid.

The nonstaggered grid system had been known to produce unrealistic pressure oscil-
lations in a converged solution until Rhie and Chow [2] presented a numerical method
(momentum interpolation method) for steady flow which satisfies the mass conserva-
tion on nonstaggered structured grids without artificial pressure oscillations. Later, Zang
et al. [3] applied the concept of the momentum interpolation method to a fractional-step
method for unsteady flow on nonstaggered structured grids. This momentum interpola-
tion method has been also applied to steady flow on unstructured grids by a few re-
searchers [4–6]. However, to the best of our knowledge, there has been no effort to ap-
ply the momentum interpolation method to unsteady flow on nonstaggered unstructured
grids.

Unstructured grids have been mostly used with the finite element method or its variant,
but the finite volume method with unstructured grids has become popular recently. The
advantage of using the finite volume method is that it is conservative as long as surface
integrals (convective and diffusive fluxes) are the same for the control volumes sharing the
surface. Finite volume methods on unstructured grids have been mostly used for steady
flow [4–11] but a few have been used for unsteady flow [12–16]. Miller and Wang [12]
used the stream-function–vorticity formulation for two-dimensional flow, but this method
cannot be directly applied to three-dimensional flow. Panet al. [13] and Weiss and Smith
[14] employed the artificial compressibility method, which needs a subiterative procedure
at each computational time step and thus requires more computational efforts. Schulz and
Kallinderis [15] and Chen and Kallinderis [16] used a first-order (forward Euler) pressure-
correction method on “traditional” nonstaggered grids (i.e., without using the momentum
interpolation method) and introduced artificial dissipation to suppress oscillatory solu-
tions. Therefore, an accurate and efficient numerical method for unsteady flow on nonstag-
gered unstructured grids, which is also easily applied to three-dimensional flow, should be
developed.

The objective of this work is to develop a new second-order time-accurate numerical
method for calculating unsteady incompressible flow on hybrid unstructured grids. The
momentum interpolation method is used together with the nonstaggered grid system, where
the pressure and Cartesian velocity components are defined at the center of each cell and
the face-normal velocities are defined at the mid-points of the corresponding cell faces, and
thus artificial pressure oscillations are eliminated. The time integration method is based on
a fully implicit fractional-step method and the resulting nonlinear momentum equations
are linearized without losing the overall time accuracy. A finite volume method is used
for the spatial derivative terms and the flow variables at the cell face are obtained using
an interpolation scheme which is independent of the cell shape and thus can be applied to
hybrid unstructured grids. The accuracy of the present method is verified by analyzing four
benchmark problems (decaying vortices, lid-driven cavity flow, backward-facing step flow,
and flow over a circular cylinder).

The numerical procedures used in the present method are described in Section 2. Section 3
shows numerical results for four different flow geometries, followed by a summary in
Section 4.
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2. NUMERICAL METHOD

2.1. Governing Equations and Grid System

The governing equations for unsteady incompressible viscous flow are

∂ui

∂t
+ ∂

∂xj
ui u j = − ∂p

∂xi
+ 1

Re

∂

∂xj

∂

∂xj
ui , (1)

∂ui

∂xi
= 0, (2)

wherexi ’s are the Cartesian coordinates andui ’s are the corresponding velocity components.
All variables are nondimensionalized by characteristic velocity and length scales, and Re
is the Reynolds number.

Figure 1 shows four different unstructured grid systems. In a traditional nonstaggered
grid shown in Fig. 1a, physically unrealistic pressure oscillations may occur due to decou-
pling between the pressure and the velocity fields. In contrast, staggered grids shown in
Figs. 1b and 1c eliminate pressure oscillations, but the control volumes for the pressure
and velocity components are very different from each other which makes the code more
complicated especially in three-dimensional unstructured grids. The difference between
the grid systems shown in Figs. 1b and 1c is that the former [9, 10] defines and updates
the Cartesian velocity components on cell face, but the latter [17–19] updates only the face-
normal velocity on cell face and then obtains the tangential velocity by interpolating the
updated face-normal velocities. The staggered grid system using the face-normal velocity

FIG. 1. Various unstructured grid systems: (a) traditional nonstaggered grid; (b) staggered grid with Cartesian
velocity components; (c) staggered grid with face-normal velocity component; (d) present nonstaggered grid.
Dashed lines denote control volumes for dependent variables.



414 KIM AND CHOI

only has been used more often than that using the Cartesian velocity components because
of the simplicity and memory–CPU savings. However, the staggered grid system using the
face-normal velocity has been proved to be first-order accurate on general triangular grids
and second-order accurate on uniform triangular grids [17, 19, 20].

The drawbacks of the traditional nonstaggered and staggered grids can be overcome by
employing a nonstaggered grid shown in Fig. 1d, where the pressure and Cartesian velocity
components are defined at each cell center, and the face-normal velocity is defined at the
mid-point of each cell face. The face-normal velocityU is defined as

U = (ui )faceni , (3)

where(ui )faceandni are the Cartesian velocities and outward-normal unit vector on the cell
face, respectively. The benefit of this grid system is that it is free from the pressure oscillation
problem and simple as compared to the staggered grid especially in three-dimensional flow.
The pressure oscillations are prevented by using the momentum interpolation method [2].
The nonstaggered grid system shown in Fig. 1d is used in the present study.

2.2. Time Integration

The time-integration method used to solve Eqs. (1) and (2) is based on a fractional-step
method [1, 21, 22], where a pseudo-pressure (or pressure) is used to correct the velocity
field such that the continuity equation is satisfied at each computational time step. In this
study, we use a second-order fully implicit time-advancement scheme (Crank–Nicolson
method) for both the convective and the viscous terms in Eq. (1),
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where1t is the computational time step and the superscriptn is the time step. Implicit
treatment of the convective and viscous terms eliminates the numerical stability restriction.

We linearize the nonlinear terms in Eq. (4) without losing the overall time accuracy [23]:
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j + un
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j + O(1t2). (5)

Then, the present fully implicit time-advancement scheme for Eqs. (1) and (2) can be written
as follows:
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Next, we apply a fractional-step method [22] to Eqs. (6) and (7):
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whereûi andu∗i are the intermediate velocities. After integrating Eqs. (8) and (10) over
each cell areaA and applying the divergence theorem, Eqs. (8)–(11) become

δûi

1t
+ 1

A

∮
l

1

2

(
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whereδûi = ûi − un
i , U andni are defined in Eq. (3),∂/∂n is the outward-normal derivative

at the cell face,A is the area of each cell, andl is the boundary surroundingA. The inter-
mediate face-normal velocityU ∗ in Eq. (14) is defined on each cell face and is obtained by
interpolation from adjacent cell-center velocitiesu∗i , i.e.,U ∗ = ũ∗i ni , where the superscript
˜ denotes interpolation. The interpolation method and numerical procedure to solve Eqs. (12)
and (14) are described in Sections 2.3 and 2.4. In this paper Eqs. (12)–(16) are derived for
two-dimensional flow, but the extension to three-dimensional flow is straightforward.

The cell-face velocity interpolated fromun+1
i does not satisfy the divergence-free condi-

tion, i.e., ∮
l
ũn+1

i ni dl 6= 0, (17)

but the face-normal velocity obtained from Eq. (16) satisfies the condition∮
l
Un+1 dl = 0. (18)

It is important to note thatUn+1 is obtained from Eq. (16) rather than interpolation from
adjacent cell-center velocitiesun+1

i and the divergence-free velocity fieldUn is used for
the calculation of the convective fluxes in Eq. (12). This procedure ensures strong cou-
pling between the pressure and the velocity. A similar procedure of using the momentum
interpolation method can be found in Zanget al. [3] for structured grids in curvilinear
coordinates.
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The boundary condition for the intermediate velocityûi is simply ûi = un+1
i to second

order in the time step. This can be shown from Eqs. (9) and (11),

ûi = un+1
i +1t

∂(pn+1− pn)

∂xi
= un+1

i + O(1t2). (19)

Replacing the boundary value of∂pn+1/∂n by (U ∗ −Un+1)/1t from Eq. (16), the
Poisson equation for the cell adjacent to the boundary is modified as
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whereNf is the number of cell faces,1l j is the length of thej th cell face, and the subscript
bdry denotes the boundary. Note that since the physical velocity fluxUn+1

j 1l j is used on
the boundary rather than the intermediate velocity fluxU ∗j 1l j , global mass conservation is
automatically satisfied.

In the present study, the Courant–Friedrichs–Lewy (CFL) number is defined as

CFL= 1

2

1

A

Nf∑
j=1

|U j1l j |1t . (21)

For the time-advancement scheme, one may consider a semi-implicit scheme such as a
second-order Adams–Bashforth method [1] or a third-order Runge–Kutta method [21] for
the convective term and the Crank–Nicolson method for the viscous term. Those schemes
have been successfully applied to a variety of incompressible flow problems. An implicit
method is preferred when the time step limit imposed by an explicit or semi-implicit stability
bound is significantly less than that imposed by the accuracy requirement. If the flow
geometry contains sharp corners which exist in many flow geometries, rapid variation
of flow variables in their vicinity would require dense grid clustering which restricts the
computational time step. A fully implicit method overcomes this restriction with a trade-off
of possible higher operation counts per time step. For example, Choiet al. [24] used a
fully implicit method in a curvilinear coordinate system to simulate flow over riblets and
reduced the required CPU time by a factor of five as compared to that of a conventional
semi-implicit method.

2.3. Interpolation

To perform integrations in Eqs. (12) and (14),8 and∂8
∂n at the mid-point on each cell face

have to be evaluated by using adjacent values, where8 is an arbitrary flow variable. In the
present study, both8 and ∂8

∂n are obtained by using the values (81,82) at the neighboring
cell center points (P1, P2) and the values (8a,8b) at the nodal points (Pa, Pb) (see Fig. 2).

First, let us consider∂8
∂n at Pf , wherePf is the mid-point on the cell face (Fig. 2). We

define a generalized coordinate system with covariant bases (e1, e2) locally on each cell
face, wheree1 ande2 are unit vectors fromPc (the cross-sectional point ofP1P2 andPa Pb)
to P2 and fromPc to Pb, respectively. Note thatPc is not the mid-point on the cell face. The
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FIG. 2. Interpolation of flow variables at the mid-point on the cell face.

gradient of8 at Pc can be expressed as

∇8 = ∂8

∂ξ
e1+ ∂8

∂η
e2, (22)

whereξ andη represent the directions alonge1 ande2, respectively, ande1 ande2 are the
corresponding contravariant bases [25]. Then, the normal component of∇8 at Pf can be
written as

∂8

∂n

∣∣∣∣
Pf

= ∇8 · n = 82−81

δ1+ δ2
− 8b −8a

1η
tanθ, (23)

whereδ1 andδ2 are the normal distances to the cell face, respectively, fromP1 andP2, θ is
the angle betweenn ande1, and1η is the distance fromPa to Pb. It is interesting to note that
Eq. (23) is composed of two terms: the first one corresponds to the principal diffusion and
the second one corresponds to the cross diffusion as in the curvilinear coordinate system.
Whenn is parallel toP1P2, the second term vanishes.

The values at the nodal points,8a and8b, are obtained as

8α =
∑Ncs

i=1 (8i /Ai )∑Ncs
i=1 (1/Ai )

, (24)

whereα=a or b, Ncs is the number of the cells sharing the node,8i is thei th cell value,
andAi is thei th cell area. This interpolation method is second-order accurate on “regular”
triangular grids and is equivalent to the bilinear interpolation on rectangular grids, where
regular triangles correspond to equilateral triangles or triangles made by adding diagonals in
a uniform rectangular grid. As an alternative, one may use a linear interpolation by properly
choosing three cell center values among all the neighboring cell center values, but the choice
of three cells is very arbitrary.
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Next, let us consider8 at Pf . The value8c at Pc is easily obtained with a second-order
accuracy (linear interpolation):

8c = δ182+ δ281

δ1+ δ2
. (25)

Then, we evaluate8 f by adding a correction term to8c,

8 f = δ182+ δ281

δ1+ δ2
+∇8 · ε

= δ182+ δ281

δ1+ δ2
+ 8a −8b

1η
|ε|, (26)

whereε is the vector fromPc to Pf and |ε| is the magnitude ofε. This interpolation
method is second-order accurate and equivalent to a central difference scheme when it
is used for evaluating convective fluxes. Similar interpolation methods were also used by
previous researchers [4, 6], but Davidson [4] did not consider the second term in Eq. (26).
However, we will show in Section 3.1 that the second term is necessary in order to maintain
a second-order accuracy.

Finally, the pressure gradient term∂p/∂xi at the cell center (Eqs. (13) and (15)) is
evaluated as

∂p

∂xi
= 1

A

∫
A

∂p

∂xi
d A= 1

A

∮
l

pni dl, (27)

where the pressure at the cell face is evaluated as in Eq. (26).
Unlike the staggered grid system, the pressure on the boundary is needed when solving

for ûi (Eq. (12)) and therefore should be updated at each time step. In the present study, the
pressure on the boundary is updated by extrapolation from interior pressure values (Fig. 3):
pA (pressure at the mid-point on the boundary cell face) andpB (pressure at the boundary
nodal point) are obtained by linear interpolation ofp1 andp2 (pressures at cell centers) by
assuming∂p/∂n= 0, i.e., pA= pa and pB= pb.

The interpolation method used in this study is derived without any assumption about the
cell shape and therefore can be applied to hybrid unstructured grids.

FIG. 3. Interpolation of the pressure on the boundary.
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2.4. Matrix Solver

After the interpolation procedure described in Section 2.3, Eqs. (12) and (14) can be
represented as

Ai j φ j = bi , (28)

where Ai j is a sparse matrix of the present linear system,φ j is a vector containing the
unknown flow variables at cell center points, andbi is a vector containing the values at the
nth time step.

It should be mentioned here that in Eq. (12)δû j is coupled withδûi . We may consider
two different approaches to resolve this problem. One is to include the terms containingδû j

( j 6= i ) in bi and do global iterations untilδûi converges. In this case, the size of the matrix
is Nc× Nc, whereNc is the number of cells. The other is to solveδûi andδû j ( j 6= i ) at
the same time by making a larger matrixAi j (2Nc× 2Nc or 3Nc× 3Nc, respectively, for
two- or three-dimensional flow). In this case, no global iteration is needed unlike the former
method, but the matrixAi j becomes large and thus stiffer than that of the former method.
In the present study, where two-dimensional benchmark flow problems are tested, we use
the latter method. However, for three-dimensional flow, the matrixAi j becomes very stiff,
and thus the former method may be preferred to the latter one.

A direct solver such as the LU decomposition may be used to solve Eq. (28), but it
is impractical because it demands too much memory. Therefore, an iterative method is
used to solve Eq. (28) and only nonzero terms of the sparse matrixAi j are stored by
using the ITPACK storage format [26] which is useful for implementation of iterative
methods on parallel and vector processors. In this study, a biconjugate gradient stabilized
(BI-CGSTAB) method [26] is used for both the momentum equation (12) and Poisson
equation (14), and the Jacobi preconditioner (Sections 3.1, 3.2, and 3.3) or an incomplete
LU preconditioner (Section 3.4) is used to enhance the convergence rate. In the case of
using the incomplete LU preconditioner, we reorder the grid numbers with a multicoloring
technique for vectorization.

The convergence criteria for Eqs. (12) and (14) are

max[|Ri (δûi )|] < ε, (29)

max[1t |Ri (p)|] < ε, (30)

whereRi (δûi ) and Ri (p) are the residuals of Eqs. (12) and (14), respectively (Ri = bi −
Ai j φ j ). Here, max[1t |Ri (p)|] corresponds to the maximum value of|∇ · u|, i.e.,
| 1A
∮

l Un+1 dl|. In Section 3,ε is prescribed to be 10−8, 10−3, and 10−4, respectively, for
decaying vortices (Section 3.1), steady flows (Sections 3.2 and 3.3), and flow over a circular
cylinder (Section 3.4).

3. NUMERICAL EXAMPLES

3.1. Decaying Vortices

The temporal and spatial accuracy of the present numerical method is verified by simulat-
ing the following two-dimensional unsteady flow, which has been investigated by previous
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FIG. 4. Mesh refinement.

researchers [1, 3, 21]:

u(x, y, t) = −cosπx sinπy e−2π2t/Re,

v(x, y, t) = sinπx cosπy e−2π2t/Re, (31)

p(x, y, t) = −1

4
(cos 2πx + cos 2πy) e−4π2t/Re.

The computational domain is−1/2≤ x, y ≤ 1/2 and computations are carried out at
Re= 10, where Re=U1L/ν andU1 is the initial maximum velocity andL is the size of a
vortex. The initial velocity condition att = 0 and the velocities at the boundaries in time
are provided from the exact solution. Four different sizes of uniformly-distributed right-
angled triangles are used to determine the overall accuracy of the present numerical method:
numbers of cells used are 200, 800, 3200, and 12800, respectively. In this study, with mesh
refinement, each triangle is split into four right-angled triangles as shown in Fig. 4.

First, computations are performed with varying the mesh size but keeping the maximum
CFL number constant as in [1, 3, 21]. Figure 5a shows the variation of the maximum
error in u with mesh refinement and the effect of the second term in Eq. (26) on the
overall accuracy for three different maximum CFL numbers. It is clear that the present
numerical method including the second term in Eq. (26) is second-order accurate for all
the CFL numbers investigated. However, when the term is neglected, the error becomes
larger and the accuracy is not second order. Note that the accuracy without the second term
in Eq. (26) becomes nearly a second order with CFL= 3 because the spatial-interpolation
error contributes less to total error as the CFL (time step) increases. The same result is also
obtained forv.

Second, the spatial and temporal accuracies are investigated, respectively. Figure 5b
shows the variation of the maximum error inu by varying mesh size but keeping the
computational time step constant and therefore the slope shown in Fig. 5b denotes the
spatial accuracy. Note that the computational time step in this case is determined to be a
small value (1t = 0.001) such that temporal error has negligible effect on total error. It is
clear that inclusion of the second term in Eq. (26) makes the spatial accuracy second-order.
Similarly, the temporal accuracy is investigated by varying the time step but keeping the
mesh size constant. Here, the finest grid of 12800 cells is used to minimize the spatial error.
Figure 5c shows that the present time integration scheme is indeed second-order accurate.

3.2. Lid-Driven Cavity Flow

The geometry, boundary conditions, and grid for the flow in a lid-driven square cavity are
shown in Fig. 6. The Reynolds number is defined as Re=U1L/ν, whereU1 is the velocity
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FIG. 5. Maximum error inu at t = 0.3: —, the second (correction) term in Eq. (26) included; ----, the term
neglected. (a) Maximum CFL constant:d, CFL= 1; m, CFL= 2; j, CFL= 3; (b) spatial accuracy (1t = 0.001);
(c) temporal accuracy (12800 cells).

of the top lid andL is the length of the bottom wall. A calculation is performed at Re= 1000
with a hybrid unstructured grid shown in Fig. 6, where 2496 rectangular cells and 3200
triangular cells are distributed near the walls and in the core region, respectively. In this
calculation, the maximum CFL number is fixed to be 10. Figure 7 shows the centerline
velocitiesu(y) andv(x) along the vertical and horizontal centerlines, respectively. The
present result is in good agreement with that of Ghiaet al. [27] who used 128× 128
uniformly distributed rectangular cells.

3.3. Backward-Facing Step Flow

Another widely used benchmark problem to examine the accuracy of numerical methods
is flow behind a backward-facing step in a channel. The flow geometry and boundary condi-
tions are described in Fig. 8. The expansion ratio is 1 : 2 and the length of the computational



FIG. 6. Geometry, boundary conditions, and grid for the lid-driven cavity flow.

FIG. 7. Centerline velocitiesu andv (Re= 1000): —, present study;d, Ghiaet al. [27].

FIG. 8. Geometry and boundary conditions for the backward-facing step flow.

FIG. 9. Grid for the backward-facing step flow.

422
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FIG. 10. Reattachment length as a function of the Reynolds number: —, present study;d, Armalyet al.[29];
×, Kim and Moin [1].

domain is 30h, whereh is the step height. A fully developed parabolic velocity profile is pre-
scribed at the inflow boundary and a convective boundary condition,∂ui /∂t + c∂ui /∂x= 0,
is used at the outflow boundary, wherec is the space-averaged streamwise velocity at the
exit [28]. A hybrid unstructured grid of 7932 rectangles and 520 triangles is used (Fig. 9),
where the triangles are locally distributed near the step (0≤ x/h ≤ 4,−0.8≤ y/h ≤ 0.8).
Calculations are performed at Re= 200, 400, and 600, where Re=Uavg(2h)/ν andUavg is
the bulk velocity. The computational time step is fixed to be1t = 0.15h/Uavg (maximum
CFL' 2.2∼3.2).

Figure 10 shows the calculated reattachment length as a function of the Reynolds number,
in comparison with the previous results of Armalyet al. [29] and Kim and Moin [1]. The
present result is in good agreement with the computational result of Kim and Moin [1] for
all the Reynolds numbers calculated. However, at Re> 400, a difference exists between
the computational (present study and [1]) and experimental [29] results. This difference
may result from the three-dimensionality of the flow as Armalyet al. [29] pointed out. At
Re= 600, a secondary separation bubble exists on the upper wall (Fig. 11). The bubble
length is 7.5h, which agrees well with the result 7.8h of Kim and Moin [1].

3.4. Flow over a Circular Cylinder

Flow over a circular cylinder at Re> 47 is a typical example of unsteady flow because vor-
tex shedding takes place at that Reynolds number range [30, 31]. Figure 12 shows the geome-
try and boundary conditions for the flow. The computational domain used is−20d≤ x≤ 20d
and−50d≤ y≤ 50d, whered is the diameter of the cylinder and (x= 0, y= 0) corresponds
to the center of the cylinder. Dirichlet boundary conditions are used at farfield boundaries as

FIG. 11. Streamlines at Re= 600.
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FIG. 12. Geometry and boundary conditions for flow over a circular cylinder.

well as at the cylinder surface, and a convective boundary condition is used for the outflow
boundary. The convective boundary condition allows vortices to smoothly pass away from
the computational domain.

Figure 13 shows a hybrid unstructured grid used in this study, which is generated by
heaping up six layers of quadrilaterals and then filling the rest with 10384 triangles by the
advancing front method [32]. Sixty four grid points are distributed on the cylinder surface.

Calculations are performed at three different Reynolds numbers: Re= 80, 100, and 120,
where Re= u∞d/ν andu∞ is the uniform inlet velocity. The computational time step is
fixed to be1t = 0.06d/u∞, which corresponds to the maximum CFL number of about 3.3.
Initially, random disturbances are imposed on a uniform velocity to quickly generate vortex
shedding.

Figure 14 shows the Strouhal number as a function of the Reynolds number, where
St= f d/u∞ and f is the shedding frequency. The calculated Strouhal number is compared
with the experimental correlation of Williamson’s [33] and the computational result of Park

FIG. 13. Hybrid unstructured grid for flow over a circular cylinder.
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FIG. 14. Strouhal number as a function of the Reynolds number:m, present study; —, St=−3.3265/
Re+ 0.1816+ 1.6× 10−4Re (Williamson [33]);×, Parket al. [30].

et al. [30] obtained by using a very fine structured grid with about 150,000 quadrilaterals.
An excellent agreement is found among the three results.

Figure 15 shows the time-averaged separation bubble size, which is the distance from the
base of the cylinder to the point where the time-averaged streamwise velocity is zero. Also
shown is the computational result of Parket al. [30]. The present result shows an excellent
agreement with that of Parket al. [30].

Figure 16 shows contours of instantaneous pressure and vorticity near the cylinder at
Re= 100. As is shown, instantaneous pressure contours are very smooth, indicating that
the pressure oscillations, which may occur with the traditional nonstaggered grid system,
are eliminated by the present numerical method. Contours of the vorticity are also smooth,

FIG. 15. Size of the time-averaged separation bubble vs Reynolds number: —, present study;d, Parket al.
[30].
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FIG. 16. Contours of instantaneous pressure and vorticity near the cylinder at Re= 100: (a) pressure;
(b) vorticity.

showing that the present interpolation method is successfully applied to the hybrid grid
used in this study.

4. SUMMARY

A new second-order time-accurate finite volume method using a fully implicit fractional-
step method is presented for computing unsteady incompressible flow on hybrid unstruc-
tured grids. A nonstaggered grid system is employed rather than a staggered grid system
because of the simplicity and easier extension to three dimensions. In this study, the mo-
mentum interpolation method, developed by Rhie and Chow [2] and further extended by
Zanget al. [3], is applied to unstructured grids to resolve the pressure oscillation problem
occurring in a nonstaggered grid system. A second-order fully implicit time-advancement
(Crank–Nicolson) scheme is used in order to remove the time step restriction and to re-
duce the required CPU time for complex geometries. The nonlinear equations resulting
from this fully implicit scheme are linearized without losing the overall time accuracy.
A finite volume method is used for the spatial derivative terms and the flow variables
at the cell face are obtained using an interpolation scheme which is independent of cell
shape and thus applicable to hybrid grids. The sparse matrices are solved using a bicon-
jugate gradient stabilized method with the Jacobi preconditioner or an incomplete LU
preconditioner. The present numerical method is applied to four benchmark problems and
the results show good agreement with previous experimental and numerical results. It is
also shown that the present method is second-order accurate in time and space, when
the values at the nodal and cell-face center points are interpolated with a second-order
accuracy.
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