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A new second-order time-accurate fractional-step method for solving unsteady in-
compressible Navier—Stokes equations on hybrid unstructured grids is presented. The
nonstaggered grid method, originally developed by Rhie and Chow (1983, J.

21, 1525) for steady flow and further extended by Zahgl.(1994,J. Comput. Phys.

114, 18) to unsteady flow on structured grids, is employed in the present study to
enforce mass conservation on hybrid unstructured grids. The pressure and Cartesian
velocity components are defined at the center of each cell, while the face-normal ve-
locities are defined at the mid-points of the corresponding cell faces. A second-order
fully implicit time-advancement scheme is used for time integration and the result-
ing nonlinear equations are linearized without losing the overall time accuracy. Both
the momentum and Poisson equations are integrated with the finite volume method
and the flow variables at the cell face are obtained using an interpolation scheme
independent of cell shape. The present numerical method is applied to four different
benchmark problems and proves to be accurate and efficieooo Academic Press

Key Words:finite volume method; unsteady incompressible flow; nonstaggered
unstructured grid.

1. INTRODUCTION

In this paper we present a second-order time-accurate numerical method for sol
unsteady incompressible Navier—Stokes equations on hybrid unstructured grids. In the
of the structured grid, one of the most popular methods to obtain a time-accurate solt
for unsteady incompressible flow is a fractional-step method on the staggered grid sys
where a pseudo-pressure is used to correct the velocity field such that the continuity equ
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is satisfied at each computational time step [1]. However, in the case of the unstruct
grid, the staggered grid system makes the code more complicated than the nonstag
grid system, because for the staggered grid the control volumes for the pressure and vel
are very different from each other. Therefore, in general the nonstaggered grid syste
preferred to the staggered grid system in the case of the unstructured grid.

The nonstaggered grid system had been known to produce unrealistic pressure c
lations in a converged solution until Rhie and Chow [2] presented a numerical metl
(momentum interpolation method) for steady flow which satisfies the mass conse
tion on nonstaggered structured grids without artificial pressure oscillations. Later, Z
et al. [3] applied the concept of the momentum interpolation method to a fractional-s
method for unsteady flow on nonstaggered structured grids. This momentum interp
tion method has been also applied to steady flow on unstructured grids by a few
searchers [4—6]. However, to the best of our knowledge, there has been no effort to
ply the momentum interpolation method to unsteady flow on nonstaggered unstruct
grids.

Unstructured grids have been mostly used with the finite element method or its vari
but the finite volume method with unstructured grids has become popular recently.
advantage of using the finite volume method is that it is conservative as long as sur
integrals (convective and diffusive fluxes) are the same for the control volumes sharing
surface. Finite volume methods on unstructured grids have been mostly used for st
flow [4—11] but a few have been used for unsteady flow [12-16]. Miller and Wang [1
used the stream-function—vorticity formulation for two-dimensional flow, but this meth
cannot be directly applied to three-dimensional flow. Baal.[13] and Weiss and Smith
[14] employed the artificial compressibility method, which needs a subiterative proced
at each computational time step and thus requires more computational efforts. Schulz
Kallinderis [15] and Chen and Kallinderis [16] used a first-order (forward Euler) pressu
correction method on “traditional” nonstaggered grids (i.e., without using the moment
interpolation method) and introduced artificial dissipation to suppress oscillatory sc
tions. Therefore, an accurate and efficient numerical method for unsteady flow on nons
gered unstructured grids, which is also easily applied to three-dimensional flow, shoul
developed.

The objective of this work is to develop a new second-order time-accurate numer
method for calculating unsteady incompressible flow on hybrid unstructured grids. -
momentum interpolation method is used together with the nonstaggered grid system, w
the pressure and Cartesian velocity components are defined at the center of each ce
the face-normal velocities are defined at the mid-points of the corresponding cell faces,
thus artificial pressure oscillations are eliminated. The time integration method is base
a fully implicit fractional-step method and the resulting nonlinear momentum equatic
are linearized without losing the overall time accuracy. A finite volume method is us
for the spatial derivative terms and the flow variables at the cell face are obtained u:
an interpolation scheme which is independent of the cell shape and thus can be appli
hybrid unstructured grids. The accuracy of the present method is verified by analyzing
benchmark problems (decaying vortices, lid-driven cavity flow, backward-facing step flc
and flow over a circular cylinder).

The numerical procedures used in the present method are described in Section 2. Sec
shows numerical results for four different flow geometries, followed by a summary
Section 4.
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2. NUMERICAL METHOD

2.1. Governing Equations and Grid System

The governing equations for unsteady incompressible viscous flow are

ou; 0 ap 1 0 0

Ul = —— 4 ———u;, 1

at + ax; ax * Redx; d%j @)
ou;
— =0, 2
™ )

wherex;'s are the Cartesian coordinates and are the corresponding velocity components
All variables are nondimensionalized by characteristic velocity and length scales, anc
is the Reynolds number.

Figure 1 shows four different unstructured grid systems. In a traditional nonstagge
grid shown in Fig. 1a, physically unrealistic pressure oscillations may occur due to dec
pling between the pressure and the velocity fields. In contrast, staggered grids shov
Figs. 1b and 1c eliminate pressure oscillations, but the control volumes for the pres
and velocity components are very different from each other which makes the code n
complicated especially in three-dimensional unstructured grids. The difference betw
the grid systems shown in Figs. 1b and 1c is that the former [9, 10] defines and upc
the Cartesian velocity components on cell face, but the latter [17—19] updates only the
normal velocity on cell face and then obtains the tangential velocity by interpolating |
updated face-normal velocities. The staggered grid system using the face-normal vel

© (d)

FIG.1. Various unstructured grid systems: (a) traditional nonstaggered grid; (b) staggered grid with Carte
velocity components; (c) staggered grid with face-normal velocity component; (d) present nonstaggered
Dashed lines denote control volumes for dependent variables.
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only has been used more often than that using the Cartesian velocity components be
of the simplicity and memory—CPU savings. However, the staggered grid system using
face-normal velocity has been proved to be first-order accurate on general triangular ¢
and second-order accurate on uniform triangular grids [17, 19, 20].

The drawbacks of the traditional nonstaggered and staggered grids can be overcon
employing a nonstaggered grid shown in Fig. 1d, where the pressure and Cartesian vel
components are defined at each cell center, and the face-normal velocity is defined &
mid-point of each cell face. The face-normal velodityis defined as

U = (U)facdi, 3

where(u; ))race @andn; are the Cartesian velocities and outward-normal unit vector on the ¢
face, respectively. The benefit of this grid systemis that it is free from the pressure oscilla
problem and simple as compared to the staggered grid especially in three-dimensional
The pressure oscillations are prevented by using the momentum interpolation methoc
The nonstaggered grid system shown in Fig. 1d is used in the present study.

2.2. Time Integration

The time-integration method used to solve Egs. (1) and (2) is based on a fractional-
method [1, 21, 22], where a pseudo-pressure (or pressure) is used to correct the vel
field such that the continuity equation is satisfied at each computational time step. In
study, we use a second-order fully implicit time-advancement scheme (Crank—Nicol
method) for both the convective and the viscous terms in Eq. (1),

ut —un

P pn+l
i
At +

0X%;

19 J n+1 n
—— (U u'), (4
Reax,- 3Xj ( : + I) ( )

1
2

NI =

8 n
+1, n+1 nony _ _
7 (Ul 4 ufu]) =

where At is the computational time step and the superserifg the time step. Implicit
treatment of the convective and viscous terms eliminates the numerical stability restrict
We linearize the nonlinear terms in Eq. (4) without losing the overall time accuracy [2

ufttuttt = oMl + ufultt — ufut 4 O(At?). (5)

J

Then, the present fully implicit time-advancement scheme for Egs. (1) and (2) can be wri
as follows:

uirH_l_uin 19 n+1,.n n, n+1 8pn+l 11 9 0 n+1 n
e —— (U " TU; Ui U = — —— — (U u'), (6
At +23Xj(l ]+ t ) aX%; +2R83Xj8XJ‘(I + I) (©)
auin-‘rl
—— =0. 7
a% (7)

Next, we apply a fractional-step method [22] to Egs. (6) and (7):

" 11 9 8 . .
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9 op™t 1 quf
X 9% N X’

(10)

in+1 _ ul* _ aer-l (11)
At ax

u

where(; andu’® are the intermediate velocities. After integrating Egs. (8) and (10) ov
each cell area and applying the divergence theorem, Egs. (8)—(11) become

80; 1 /1
s j{_(unsai +uPn;80; + 2u"U) di
11 0
— 5 2u) dl, 12
/ 3xI 7{2R an e ) (12)
R ap"
uf — 0; = At—, 13
F_ o (13)
8pn+l l
— u dl, 14
ff AAL -
8pn+l
uMtt —ur = —At , (15)
3Xi
aer-l
on

wheres®; = 0; — u', U andn; are defined in Eq. (3))/9n is the outward-normal derivative
at the cell faceA is the area of each cell, ahds the boundary surrounding. The inter-
mediate face-normal velocity* in Eq. (14) is defined on each cell face and is obtained &
interpolation from adjacent cell-center velocitigs i.e.,U* = {if'n;, where the superscript
“denotesinterpolation. The interpolation method and numerical procedure to solve Egs.
and (14) are described in Sections 2.3 and 2.4. In this paper Egs. (12)—(16) are derive
two-dimensional flow, but the extension to three-dimensional flow is straightforward.

The cell-face velocity interpolated froof "* does not satisfy the divergence-free condi
tion, i.e.,

7{ aMin dl #£ 0, (17)
|

but the face-normal velocity obtained from Eq. (16) satisfies the condition
fu“*ldl =0. (18)
|

It is important to note that) "+ is obtained from Eq. (16) rather than interpolation from
adjacent cell-center velocitiag™* and the divergence-free velocity field is used for
the calculation of the convective fluxes in Eq. (12). This procedure ensures strong
pling between the pressure and the velocity. A similar procedure of using the momen
interpolation method can be found in Zaegal. [3] for structured grids in curvilinear
coordinates.
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The boundary condition for the intermediate velodityis simply (; = ui”Jrl to second
order in the time step. This can be shown from Egs. (9) and (11),

a(pn+l _ pn) _

0 = Uin+l + At %
i

u! 4+ o(at?). (19)

Replacing the boundary value 6p"*1/an by (U* —U"1)/At from Eq. (16), the
Poisson equation for the cell adjacent to the boundary is modified as

1 N+ 8pn+1 1 el

— Al = —— U Al; U Al s 20

AZ<an).J AAT _Z Ry (20)
j=1 J j=bdry

#bdry

J#bdfy

whereN; is the number of cell faced\l; is the length of thg th cell face, and the subscript
bdry denotes the boundary. Note that since the physical veIocit;kJ[tb%Al,— is used on
the boundary rather than the intermediate velocity ol j, global mass conservation is
automatically satisfied.

In the present study, the Courant—Friedrichs—Lewy (CFL) number is defined as

113
CFL= éxj;w,-mjmt. (21)

For the time-advancement scheme, one may consider a semi-implicit scheme suct
second-order Adams—Bashforth method [1] or a third-order Runge—Kutta method [21]
the convective term and the Crank—Nicolson method for the viscous term. Those sche
have been successfully applied to a variety of incompressible flow problems. An impl
method is preferred when the time step limitimposed by an explicit or semi-implicit stabil
bound is significantly less than that imposed by the accuracy requirement. If the fl
geometry contains sharp corners which exist in many flow geometries, rapid varia
of flow variables in their vicinity would require dense grid clustering which restricts tt
computational time step. A fully implicit method overcomes this restriction with a trade-c
of possible higher operation counts per time step. For example, €tadi [24] used a
fully implicit method in a curvilinear coordinate system to simulate flow over riblets ar
reduced the required CPU time by a factor of five as compared to that of a conventic
semi-implicit method.

2.3. Interpolation

To perform integrations in Egs. (12) and (1¢]>)and at the mid-point on each cell face
have to be evaluated by usmg adjacent values, Wﬁ)esean arbitrary flow variable. In the
present study, bottp and ~ are obtained by using the valueby( ®,) at the neighboring
cell center points®y, P,) and the values®,, @) at the nodal pointsH,, P,) (see Fig. 2).

First, let us considef(% at P¢, wherePs is the mid-point on the cell face (Fig. 2). We
define a generalized coordinate system with covariant bases) locally on each cell
face, wheree; ande;, are unit vectors froni, (the cross-sectional point &P, and P, Py)
to P, and fromP; to R, respectively. Note tha®. is not the mid-point on the cell face. The
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P,

FIG. 2. Interpolation of flow variables at the mid-point on the cell face.

gradient of® at P, can be expressed as

AP AP
= —$e1+ We2, (22)

whereg andr represent the directions aloegande,, respectively, an@! ande? are the
corresponding contravariant bases [25]. Then, the normal compon®&n @t P; can be
written as

BRI Dy — Dy Dp— Dy

—| =Vd.n= — tane, (23)
3n P; 81+82 A’I

wheres; andé, are the normal distances to the cell face, respectively, fpandP,, 6 is
the angle betweemande;, andAr is the distance fronP, to Py. Itis interesting to note that
Eq. (23) is composed of two terms: the first one corresponds to the principal diffusion
the second one corresponds to the cross diffusion as in the curvilinear coordinate sy:
Whenn is parallel toP, P, the second term vanishes.

The values at the nodal points, and®y,, are obtained as

_ T (@ /M)
oY @A)

wherea =a or b, N¢s is the number of the cells sharing the node,is theith cell value,
and A is theith cell area. This interpolation method is second-order accurate on “regul
triangular grids and is equivalent to the bilinear interpolation on rectangular grids, wh
regular triangles correspond to equilateral triangles or triangles made by adding diagon:
a uniform rectangular grid. As an alternative, one may use a linear interpolation by prop
choosing three cell center values among all the neighboring cell center values, but the cl
of three cells is very arbitrary.

(24)

o



418 KIM AND CHOI

Next, let us conside® at Ps. The valued. at P. is easily obtained with a second-order
accuracy (linear interpolation):

8102+ 5,01

O, = 25
¢ 81+ 62 (25)

Then, we evaluaté ; by adding a correction term @,

61D 5o d
o, = 2%2 1% o4 o
81+ 62
01 P2+ 8201 Py — Dy

81+ 82 An

lel, (26)

wheree is the vector fromP; to P; and|e| is the magnitude o€. This interpolation
method is second-order accurate and equivalent to a central difference scheme wh
is used for evaluating convective fluxes. Similar interpolation methods were also usec
previous researchers [4, 6], but Davidson [4] did not consider the second term in Eq. (
However, we will show in Section 3.1 that the second term is necessary in order to main
a second-order accuracy.

Finally, the pressure gradient terbp/dx; at the cell center (Egs. (13) and (15)) is

evaluated as
ap 1 ap 17{
— =— | —dA=— , dl 27

X A/Aaxid A |pn|d’ ( )

where the pressure at the cell face is evaluated as in Eq. (26).

Unlike the staggered grid system, the pressure on the boundary is needed when sc
for 0; (Eq. (12)) and therefore should be updated at each time step. In the present stud
pressure on the boundary is updated by extrapolation from interior pressure values (Fig
pa (pressure at the mid-point on the boundary cell face) pgi@pressure at the boundary
nodal point) are obtained by linear interpolationpafand p, (pressures at cell centers) by
assumingp/on=0, i.e.,pa = Pa and pg = Po.

The interpolation method used in this study is derived without any assumption about
cell shape and therefore can be applied to hybrid unstructured grids.

Pa PB \

FIG. 3. Interpolation of the pressure on the boundary.

boundary
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2.4. Matrix Solver

After the interpolation procedure described in Section 2.3, Egs. (12) and (14) car
represented as

Ajo; =Dy, (28)

where A;j is a sparse matrix of the present linear systemis a vector containing the
unknown flow variables at cell center points, dnds a vector containing the values at the
nth time step.

It should be mentioned here that in Eq. (32} is coupled withsG;. We may consider
two different approaches to resolve this problem. One is to include the terms con#ining
(j #i)in b, and do global iterations unéii; converges. In this case, the size of the matri
is N¢ x N¢, whereN; is the number of cells. The other is to sol@ andsd; (j #i) at
the same time by making a larger matiy (2N¢ x 2N; or 3N; x 3N, respectively, for
two- or three-dimensional flow). In this case, no global iteration is needed unlike the fort
method, but the matri¥y;; becomes large and thus stiffer than that of the former metho
In the present study, where two-dimensional benchmark flow problems are tested, we
the latter method. However, for three-dimensional flow, the mafixoecomes very stiff,
and thus the former method may be preferred to the latter one.

A direct solver such as the LU decomposition may be used to solve Eq. (28), bt
is impractical because it demands too much memory. Therefore, an iterative methc
used to solve Eq. (28) and only nonzero terms of the sparse m@iriare stored by
using the ITPACK storage format [26] which is useful for implementation of iterativ
methods on parallel and vector processors. In this study, a biconjugate gradient stabi
(BI-CGSTAB) method [26] is used for both the momentum equation (12) and Poiss
equation (14), and the Jacobi preconditioner (Sections 3.1, 3.2, and 3.3) or an incom
LU preconditioner (Section 3.4) is used to enhance the convergence rate. In the ca
using the incomplete LU preconditioner, we reorder the grid numbers with a multicolori
technique for vectorization.

The convergence criteria for Egs. (12) and (14) are

max[|R (80)[] < e, (29)
max[At|R (P[] < e, (30)

whereR; (80;) and R, (p) are the residuals of Egs. (12) and (14), respectivBy=b; —
Aj¢;). Here, maxpt|R (p)[]] corresponds to the maximum value ¢V -ul, i.e.,

|+ § U™LdI|. In Section 3¢ is prescribed to be 16, 1073, and 10, respectively, for
decaying vortices (Section 3.1), steady flows (Sections 3.2 and 3.3), and flow over a circ
cylinder (Section 3.4).

3. NUMERICAL EXAMPLES

3.1. Decaying Vortices

The temporal and spatial accuracy of the present numerical method is verified by simi
ing the following two-dimensional unsteady flow, which has been investigated by previ
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)

FIG. 4. Mesh refinement.

researchers [1, 3, 21]:

. _ 2,
u(x, y,t) = —cosmx sinzy e 27 /Re,

v(X,y,t) = sinzx cosmy e—Zszt/Re’ 31)

p(x, Yy, t) = —%(cos 2rX + COS 2ry) e 4T t/Re,

The computational domain is1/2 < x, y < 1/2 and computations are carried out at
Re=10, where Re=U; L /v andU; is the initial maximum velocity and is the size of a
vortex. The initial velocity condition a@t=0 and the velocities at the boundaries in time
are provided from the exact solution. Four different sizes of uniformly-distributed rigt
angled triangles are used to determine the overall accuracy of the present numerical me
numbers of cells used are 200, 800, 3200, and 12800, respectively. In this study, with r
refinement, each triangle is split into four right-angled triangles as shown in Fig. 4.

First, computations are performed with varying the mesh size but keeping the maxirn
CFL number constant as in [1, 3, 21]. Figure 5a shows the variation of the maxim
error in u with mesh refinement and the effect of the second term in Eq. (26) on t
overall accuracy for three different maximum CFL numbers. It is clear that the pres
numerical method including the second term in Eq. (26) is second-order accurate fo
the CFL numbers investigated. However, when the term is neglected, the error becc
larger and the accuracy is not second order. Note that the accuracy without the second
in Eq. (26) becomes nearly a second order with GF2 because the spatial-interpolation
error contributes less to total error as the CFL (time step) increases. The same result i
obtained for.

Second, the spatial and temporal accuracies are investigated, respectively. Figur
shows the variation of the maximum error inby varying mesh size but keeping the
computational time step constant and therefore the slope shown in Fig. 5b denotes
spatial accuracy. Note that the computational time step in this case is determined to
small value At =0.001) such that temporal error has negligible effect on total error. It
clear that inclusion of the second term in Eq. (26) makes the spatial accuracy second-c
Similarly, the temporal accuracy is investigated by varying the time step but keeping
mesh size constant. Here, the finest grid of 12800 cells is used to minimize the spatial €
Figure 5¢ shows that the present time integration scheme is indeed second-order acci

3.2. Lid-Driven Cavity Flow

The geometry, boundary conditions, and grid for the flow in a lid-driven square cavity
shown in Fig. 6. The Reynolds number is defined as=RR L /v, whereU, is the velocity
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neglected. (a) Maximum CFL consta@®; CFL=1; A, CFL=2; W, CFL= 3; (b) spatial accuracy\t = 0.001);
(c) temporal accuracy (12800 cells).

of the top lid and_ is the length of the bottom wall. A calculation is performed atREO00
with a hybrid unstructured grid shown in Fig. 6, where 2496 rectangular cells and 3:
triangular cells are distributed near the walls and in the core region, respectively. In
calculation, the maximum CFL number is fixed to be 10. Figure 7 shows the center
velocitiesu(y) and v(x) along the vertical and horizontal centerlines, respectively. Tt
present result is in good agreement with that of Gétiaal. [27] who used 12& 128
uniformly distributed rectangular cells.

3.3. Backward-Facing Step Flow

Another widely used benchmark problem to examine the accuracy of numerical mett
is flow behind a backward-facing step in a channel. The flow geometry and boundary co
tions are described in Fig. 8. The expansion ratio is 1 : 2 and the length of the computati
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FIG. 8. Geometry and boundary conditions for the backward-facing step flow.
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FIG. 9. Grid for the backward-facing step flow.
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FIG. 10. Reattachmentlength as a function of the Reynolds number: —, present@uélsmaly et al.[29];
x, Kim and Moin [1].

domainis 3@, whereh is the step height. A fully developed parabolic velocity profile is pre
scribed at the inflow boundary and a convective boundary conditigngt + cou; /dx =0,

is used at the outflow boundary, wherés the space-averaged streamwise velocity at t
exit [28]. A hybrid unstructured grid of 7932 rectangles and 520 triangles is used (Fig.
where the triangles are locally distributed near the step ' h < 4,—0.8 < y/h < 0.8).
Calculations are performed at Re200, 400, and 600, where ReU,,(2h) /v andUayg is
the bulk velocity. The computational time step is fixed tote= 0.15h /Uy (Maximum
CFL~22~32).

Figure 10 shows the calculated reattachment length as a function of the Reynolds nur
in comparison with the previous results of Armalyal.[29] and Kim and Moin [1]. The
present result is in good agreement with the computational result of Kim and Moin [1]
all the Reynolds numbers calculated. However, at-RI€0, a difference exists between
the computational (present study and [1]) and experimental [29] results. This differe
may result from the three-dimensionality of the flow as Armetlyl. [29] pointed out. At
Re=600, a secondary separation bubble exists on the upper wall (Fig. 11). The bul
length is 75h, which agrees well with the result&h of Kim and Moin [1].

3.4. Flow over a Circular Cylinder

Flow over acircular cylinder at Re 47 is a typical example of unsteady flow because vo
tex shedding takes place at that Reynolds number range [30, 31]. Figure 12 shows the ge
try and boundary conditions for the flow. The computational domain use2dd < x < 20d
and—50d < y <50d, whered is the diameter of the cylinder and £ 0, y = 0) corresponds
to the center of the cylinder. Dirichlet boundary conditions are used at farfield boundarie

M

FIG. 11. Streamlines at Re 600.
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FIG. 12. Geometry and boundary conditions for flow over a circular cylinder.

well as at the cylinder surface, and a convective boundary condition is used for the out
boundary. The convective boundary condition allows vortices to smoothly pass away fi
the computational domain.

Figure 13 shows a hybrid unstructured grid used in this study, which is generated
heaping up six layers of quadrilaterals and then filling the rest with 10384 triangles by
advancing front method [32]. Sixty four grid points are distributed on the cylinder surfa

Calculations are performed at three different Reynolds numbers:8 100, and 120,
where Re=u..d/v anduy, is the uniform inlet velocity. The computational time step is
fixed to beAt = 0.06d/u,,, which corresponds to the maximum CFL number of about 3..
Initially, random disturbances are imposed on a uniform velocity to quickly generate vor
shedding.

Figure 14 shows the Strouhal number as a function of the Reynolds number, wt
St= fd/u. andf is the shedding frequency. The calculated Strouhal number is compa
with the experimental correlation of Williamson'’s [33] and the computational result of Pe
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FIG. 13. Hybrid unstructured grid for flow over a circular cylinder.
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0.20 T T T T T
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Re

FIG. 14. Strouhal number as a function of the Reynolds numlerpresent study; —, St —3.3265
Re+0.1816+ 1.6 x 10~*Re (Williamson [33]);x, Parket al.[30].

et al.[30] obtained by using a very fine structured grid with about 150,000 quadrilater:
An excellent agreement is found among the three results.

Figure 15 shows the time-averaged separation bubble size, which is the distance fror
base of the cylinder to the point where the time-averaged streamwise velocity is zero.
shown is the computational result of Patial. [30]. The present result shows an excellen
agreement with that of Pait al.[30].

Figure 16 shows contours of instantaneous pressure and vorticity near the cylind
Re=100. As is shown, instantaneous pressure contours are very smooth, indicating
the pressure oscillations, which may occur with the traditional nonstaggered grid sys
are eliminated by the present numerical method. Contours of the vorticity are also smc

4 T T T T

3F il
oot —

L/d

40 60 80 100 120 140
Re

FIG. 15. Size of the time-averaged separation bubble vs Reynolds number: —, presen@stidyket al.
[30].
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FIG. 16. Contours of instantaneous pressure and vorticity near the cylinder at1B@: (a) pressure;
(b) vorticity.

showing that the present interpolation method is successfully applied to the hybrid
used in this study.

4. SUMMARY

A new second-order time-accurate finite volume method using a fully implicit fractions
step method is presented for computing unsteady incompressible flow on hybrid unst
tured grids. A nonstaggered grid system is employed rather than a staggered grid sy
because of the simplicity and easier extension to three dimensions. In this study, the
mentum interpolation method, developed by Rhie and Chow [2] and further extendec
Zanget al.[3], is applied to unstructured grids to resolve the pressure oscillation probl
occurring in a nonstaggered grid system. A second-order fully implicit time-advancem
(Crank—Nicolson) scheme is used in order to remove the time step restriction and tc
duce the required CPU time for complex geometries. The nonlinear equations resul
from this fully implicit scheme are linearized without losing the overall time accurac
A finite volume method is used for the spatial derivative terms and the flow variab
at the cell face are obtained using an interpolation scheme which is independent of
shape and thus applicable to hybrid grids. The sparse matrices are solved using a b
jugate gradient stabilized method with the Jacobi preconditioner or an incomplete
preconditioner. The present numerical method is applied to four benchmark problems
the results show good agreement with previous experimental and numerical results.
also shown that the present method is second-order accurate in time and space,
the values at the nodal and cell-face center points are interpolated with a second-c
accuracy.
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